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Abstract Deoxyribonucleic acid (DNA) is the genetic material for all living
organisms, and as a nanostructure offers the means to create novel nanoscale devices.
In this paper, we investigate the interaction of deoxyribonucleic acid inside single-
walled carbon nanotubes. Using classical applied mathematical modeling, we derive
explicit analytical expressions for the encapsulation of DNA inside single-walled car-
bon nanotubes. We adopt the 6–12 Lennard–Jones potential function together with
the continuous approach to determine the preferred minimum energy position of the
dsDNA molecule inside a single-walled carbon nanotube, so as to predict its location
with reference to the cross-section of the carbon nanotube. An analytical expression is
obtained in terms of hypergeometric functions which provides a computationally rapid
procedure to determine critical numerical values. We observe that the double-strand
DNA can be encapsulated inside a single-walled carbon nanotube with a radius larger
than 12.30 Å, and we show that the optimal single-walled carbon nanotube to enclose
a double-stranded DNA has radius 12.8 Å.

Keywords Deoxyribonucleic acid (DNA) ·
Single-walled carbon nanotube (SWCNT) ·
Lennard-Jones potential · Continuous approach

1 Introduction

Classical applied mathematics and mechanics generate models to predict ideal behav-
ior and to determine simple but relevant solutions which provide insight into complex
physical processes. In many disciplines, applied mathematical modelling has been
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used to determine elegant solutions to problems, but thus far, few problems have been
addressed in nanotechnology. Recently, the characterization of nano-materials and the
design and realization of nanostructure based devices with advanced functionality has
had an impact on the field of materials science and micro-engineering [6]. Since the
discovery of the double helix structure of deoxyribonucleic acid (DNA) by Watson
and Crick in 1953 [24], DNA has also generated much research interest, and recently
several areas in modern biotechnology have shown considerable potential for DNA
molecules in the construction of nanostructures and devices, such as the assembly
of devices and computational elements, for the assembly of interconnects, or as the
device element itself [19]. In addition, the encapsulation of biomolecules such as DNA
has promised many applications in gene and drug delivery [12]. Furthermore, inor-
ganic nanomaterials involving carbon nanotubes (CNTs), nanocrystals, and nanowires
with their unique physical and chemical properties have generated attention for future
applications such as drug delivery, enzyme immobilization, and DNA transfection
[15,16,19]. The functionalization of CNTs with DNA has recently aroused interest in
the developing area of nanobiotechnology due to many potential applications in mole-
cular electronics, field devices and medical applications [3,8,21]. These applications
of DNA with CNTs have increased the interest in CNT solubility in organic media
and DNA assisted CNT characterisation [1,22,27,28].

Xu et al. [25] use a tight-binding method combined with molecular dynamics (MD)
simulations to investigete the electrostatic signals generated by DNA segments inside
short semiconducting single-walled carbon nanotubes, and they obtain stronger elec-
trical signals for the semiconducting CNTs when DNA bases are present inside the
CNT. Shim et al. [22] focus on encapsulating DNA molecules inside CNTs, while Cui
et al. [5] show that the double stranded DNA molecules can be encapsulated inside
multiwalled carbon nanotubes in water at 400 K and 3 Bar. In addition, by employing
the (MD) simulation to study the translocating of dsDNA molecules through single
wall carbon nanotube, Xue and Chen [26] show that the dsDNA molecules could be
inserted into (20, 20) CNT within 100 ps in vacuo. Lau et al. [17] investigate the encap-
sulation of double-stranded DNA inside single-walled carbon nanotubes of diameters
30 and 40 Å, using (MD) simulation. They find that the structure of dsDNA is not sig-
nificantly perturbed if the counterions are included inside the nanotube. Ito et al. [14]
study the transport of the dsDNA molecule through a multiwalled carbon nanotube
with 77 nm in diameter by fluorescence microscopy.

In the present work, we study the equilibrium position for a double helix DNA
molecule inside a single-wall carbon nanotube (SWCNT), and by minimizing the
interaction energy between the DNA and the CNT, we deduce the optimal radius of
the CNT which can be used to accommodate the DNA. In particular, we assume the
B-DNA form which is the structure commonly found inside cells [2,21]. With reference
to Fig. 1, we consider a unit cell comprising a DNA molecule over a distance of 34 Å.
The DNA groove sites refer to the spaces between the strands, and there are two
groove sites which are created by the coiling of the two helices around each other;
the wider one is called the major groove which is 22 Å in length, and the smaller
is called the minor groove which in is 12 Å in length [2]. We join the two helices
with a continuum of straight, horizontal lines forming a surface which resembles that
of a twisted ribbon and which we use to model the structure of the DNA unit cell.
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Fig. 1 Assumed geometry of double helix B-DNA for one turn of helix (34 Å)

The DNA comprises five elements: carbon (C), oxygen (O), hydrogen (H), nitrogen
(N) and phosphorus (P) [2,11,18,23]. There are approximately 21 nucleotides that
make up one turn of the dsDNA; each nucleotide is composed of deoxyribose sugar
attached to a single phosphate group and the base which may be either guanine (G),
cytosine (C), adenine (A) and thymine (T). After taking the average of atoms of 21
bases and adding them to the atoms of the deoxyribose sugar and the phosphate group,
we have 204.75 carbon atoms, 189 oxygen atoms, 299.25 hydrogen atoms, 78.75
nitrogen atoms and 21 phosphorus atoms, which gives a total average of 792.75 atoms
in the unit cell. The modeling proposed here is not intended to compute all the detail
of the underlying physics, but rather to represent the most important interactions for
the purpose of determining the dominant phenomena of the system. In addition, the
theoretical results presented in this paper might pave the way toward further developing
the area.

In Sect. 2, we introduce the Lennard-Jones potential and the continuous approach
which assumes an average atomic surface density of the atoms on the DNA molecule
and an average surface density of carbon atoms on the nanotube. We comment that
Girifalco et al. [9] state that the continuum Lennard-Jones approach may in many
instances be a good approximation for uniform atomic distributions. In Sect. 3.1, we
present the details for the derivation of the total interaction energy per unit length for
the DNA molecule which is assumed to be located inside the single-walled carbon
nanotube. In addition, in Sect. 3.2, we also give the corresponding calculation for the
special case of the interaction between the atoms of DNA and the carbon nanotube
surface when the helical phase angle φ = π , and some conclusions are presented in
Sect. 4. In Appendices A and B we present the analytical details for the interaction
energy for any value of the helical phase angle φ and for the specific value φ = π ,
respectively.
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2 Atomic interaction potentials

2.1 Lennard-Jones potential

The total non-bonded interaction energy E , may be obtained by summing the interac-
tion energy for each atomic pair and is given by

E =
∑

i

∑

j

P(ρi j ),

where P(ρi j ) is a potential function for atoms i and j which are separated by a
distance ρi j . In the continuous approximation, the atoms are assumed to be uniformly
distributed over the surface of the molecules, and so we replace the double summation
by two surface integrals, thus

E = η1η2

∫

S1

∫

S2

P(ρ) d S1 d S2,

where η1 and η2 are atomic surface densities of the first and the second molecules,
respectively, and ρ is the distance between two typical surface elements d S1 and d S2
on the two unbonded molecules. In this paper, we adopt the 6–12 Lennard–Jones
potential to determine the van der Waals interaction energy. The classical Lennard-
Jones potential for two atoms at a distance ρ apart is given by

P(ρ) = 4ε
[

−
(σ

ρ

)6 +
(σ

ρ

)12]
,

where ρ is the distance between two atoms, ε is the magnitude of the energy at the
equilibrium distance ρ0 = 21/6σ , and σ is the atomic distance when the potential
energy is zero. The constants ε and σ are determined experimentally and if given the
values ε1, σ1 for the interaction of the atoms of one species and ε2, σ2 for the interaction
of the atoms of a second species, then these parameters for the interaction of atoms of
species 1 with those of species 2 may be determined from the empirical mixing rules
given by ε12 = (ε1ε2)

1/2, and σ12 = (σ1 + σ2)/2 [9,13]. The 6–12 Lennard–Jones
potential may also be expressed as

P(ρ) = − A

ρ6 + B

ρ12 ,

where A and B are called the attractive and the repulsive constants, respectively, and
are given in terms of the previously given parameters given previously by A = 4εσ 6

and B = 4εσ 12. Table 1 gives numerical values of the Lennard-Jones constants for
the particular elements studied in this paper. To determine the total interaction energy
for two non-bonded molecules we use the Lennard-Jones potential function for two
non-bonded molecules with the continuous approximation which is given by
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Table 1 Lennard-Jones force
constants [20] ε(eV × 10−2) σ (Å)

C–C 0.4119 3.88

C–H 0.1336 3.54

C–N 0.5089 3.7875

C–O 0.6197 3.695

C–P 0.6197 4.0875

E = η1η2

∫

S1

∫

S2

(
− A

ρ6 + B

ρ12

)
d S1 d S2,

where η1 and η2 are atomic surface densities of the first and the second molecules,
respectively.

2.2 DNA and CNT geometry

In this study, we model the DNA as a surface with the double helical geometry located
on the z-axis, as shown in Fig. 1. With reference to a rectangular Cartesian coordinate
system (x, y, z), a typical point on the surface of the DNA is given by

R(θ1, t) =
(

r

2

[
cos θ1 + cos(θ1 − φ) + t

(
cos θ1 − cos(θ1 − φ)

)]
,

r

2

[
sin θ1 + sin(θ1 − φ) + t

(
sin θ1 − sin(θ1 − φ)

)]
,

cθ1

2π

)
,

where r = 10 Å is the radius of the DNA helix, c = 34 Å is the unit cell length,
φ = 12π/17 is the helical phase angle parameter and the parametric variable t is such
that −1 < t < 1, and −π < θ1 < π . Similarly, with reference to the rectangular
Cartesian coordinate system (x, y, z) with origin located at the centre of the nanotube,
a typical point on the surface of the tube has the coordinates (a cos θ2, a sin θ2, z),
where a is the radius of the carbon nanotube and −∞ < z < ∞ and −π < θ2 < π .
Thus, the distance ρ between a typical surface element on the CNT and another on
the DNA is given by

ρ2 = a2−ar
[

cos(θ1−θ2)+ cos(θ1−θ2−φ)+t[cos(θ1−θ2)− cos(θ1−θ2−φ)]]

+r2
[
cos2(φ/2)+t2 sin2(φ/2)

]
+(z−cθ1/2π)2.
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3 Interaction of carbon nanotube with DNA

3.1 General case

In this section, we consider the general helical angle φ for which we have in mind
the particular value φ = 12π/17 which leads to the major and minor groove sites
mentioned above. The equilibrium position is the location of the minimum potential
energy for the DNA inside the CNT. We begin by considering the interaction of a
carbon nanotube with a single point situated at a distance ξ from the tube axis, as
shown in Fig. 2. We then integrate this potential for a single point over the surface of
the DNA molecule, thus (Table 2)

ξ2 =
( r

2
[cos θ1 + cos(θ1 − φ) + t (cos θ1 − cos(θ1 − φ))]

)2

+
( r

2
[sin θ1 + sin(θ1 − φ) + t (sin θ1 − sin(θ1 − φ))]

)2

= r2
[
cos2(φ/2) + t2 sin2(φ/2)

]
.

Also, the distance ρ between two typical surface elements on the DNA and the CNT
molecules is given by

ρ2 = (a − ξ)2 + z2 + 4aξ sin2(θ2/2),

where a is the radius of CNT, r = 10 Å, c = 34 Å, −1 < t < 1,−π < θ2 < π and
we have in mind the value φ = 12π/17. Also, we have the interaction energy of point
with infinite carbon nanotube from [4], which is given by

Fig. 2 Double-strand DNA molecule inside a single-walled carbon nanotube

Table 2 Approximate
Lennard-Jones attractive and
repulsive constants

A (eV Å6) B (eV Å12)

C–C 56.21 191,800

C–H 10.52 20,700

C–N 60.09 177,400

C–O 63.08 160,600

C–P 115.6 539,300
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Ec = 3π2ηg

4a4

[
−AF

(
5

2
,

5

2
; 1;

(
ξ

a

)2
)

+ 21B

32a6 F

(
11

2
,

11

2
; 1;

(
ξ

a

)2
)]

,

where ηg is the mean atomic surface density of CNT, and F(a, b; c; z) is the standard
hypergeometric function [10]. Thus, the total potential energy of the dsDNA with the
CNT per unit length E , is given by

E = rcηd1

2π
sin(φ/2)

π∫

−π

1∫

−1

Ec

(
1 + 4r2π2 sin2(φ/2)

c2 t2
)1/2

dt dθ2

= 2rcηd1 sin(φ/2)

1∫

0

Ec

(
1 + 4r2π2 sin2(φ/2)

c2 t2
)1/2

dt, (1)

where ηd1 represents the mean atomic surface density of DNA for the helical phase
angle φ = 12π/17. The details for the analytical evaluation of (1) are presented in
Appendix A from which we find that the total interaction energy for the DNA inside
the CNT for any value of the helical phase angle φ is given by

E = 3π2rcηgηd1 sin(φ/2)

2a4

(
− AR3 + 21B

32a6 R6

)
, (2)

where Rn is defined by (4a).

3.1.1 Results and discussions for φ = 12π/17

Although the final expression (2) with Rn defined by (4a) appear to be quite compli-
cated, the numerical solution is readily obtained using the algebraic computer package
MAPLE using the parameter values given in Table. 3. We show graphically in Fig. 3 the
relation between the potential energy and the radius of the DNA (r ) which are under-
taken for each of the four specific armchair carbon nanotubes (i, i) for i = 18, 19, 20
and 21. As shown in Fig. 3, the radii of DNA molecules which minimize the interaction

Table 3 Numerical values of
constants used in model Radius of (18, 18) (Å) 12.21

Radius of (19, 19) (Å) 12.88

Radius of (20, 20) (Å) 13.56

Radius of (21, 21) (Å) 14.24

Mean surface density of carbon nanotube ηg = 0.3812 Å−2

Mean surface density of DNA (φ = 12π/17) ηd1 = 0.97 Å−2

Mean surface density of DNA (φ = π ) ηd2 = 0.83 Å−2

Attractive constant CNT-DNA A = 42.563 eV Å6

Repulsive constant CNT-DNA B = 127, 534.91 eV Å12
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Fig. 3 Total interaction potential between DNA molecule inside (18, 18), (19, 19), (20, 20) and (21, 21)
CNTs as function of DNA radius r for φ = 12π/17

energy and which we refer to as the optimal radius are 8.96 Å, 9.63 Å, 10.31 Å and 11
Å for the (18, 18), (19, 19), (20, 20) and (21, 21) nanotubes, respectively. In addition,
the larger the radius of the nanotube, the larger the optimal radius of DNA as larger
radii nanotubes tend to accommodate larger DNAs. The DNA becomes unstable when
the radii of DNA are beyond 9.48 Å, 10.17 Å, 10.85 Å and 11.54 Å for the (18, 18),
(19, 19), (20, 20) and (21, 21) nanotubes, respectively due to the mutually repulsive
force between the DNA and the nanotube. Also, Fig. 4 shows the interaction energy
as a function of the radius of the CNT. We observe that the encapsulation of dsDNA
inside carbon nanotubes may occur for radii greater than 12.28 Å. In addition, as shown
in Fig. 4 if we vary the CNT radius the preferred radius of carbon nanotube giving
the maximum energy to enclose the double helix DNA for this case (φ = 12π/17) is
about 12.71 Å, so we may infer that the (19, 19) tube is the preferred tube.

3.2 Special case φ = π

In this section, we assume that the value of φ is equal to π . In this special case the
formal analytical details are slightly simpler than those for the general case. Again
the equilibrium position arises from the location of the minimum potential energy for
the DNA molecule inside the CNT, and we begin by considering the interaction of a
carbon nanotube with a single point located at a distance ξ from the tube axis, also as
shown in Fig. 2. We then integrate the potential for a single point over the surface of
the DNA molecule, and for the second integration we make the substitution ξ = r t .
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Fig. 4 Total interaction potential between DNA molecule and CNT as function of tube radius a for
φ = 12π/17

Also, the distance between two typical points ρ is given by

ρ2 = a2 + ξ2 + z2 − 2aξ cos θ2.

Now to evaluate the total interaction in this case we, follow the same steps as in the
previous case, and we find that the total potential energy per unit length E for the
offset DNA molecule in a carbon nanotube for φ = π , is given by

E = 3π2rcηgηd2

2a4

(
− AI3 + 21B

32a6 I6

)
, (3)

where ηd2 represents the mean atomic surface density of DNA for the helical phase
angle φ = π . The formal details for the analytical evaluation of (3) are presented in
Appendix B, and In is defined by (4b).

3.2.1 Results and discussions for φ = π

The numerical solution is evaluated using the algebraic computer package MAPLE
with the parameter values as given in Table 3. We show graphically in Fig. 5 the relation
between the potential energy and the radius r of the DNA molecule. As shown in Fig. 5,
the minimum energy is obtained when r = 8.95 Å, 9.61 Å, 10.30 Å and 10.99 Å for
(18, 18), (19, 19), (20, 20) and (21, 21) carbon nanotubes, respectively. Thus, we
observe that the optimal radii of the DNA which provide the lowest interaction energy
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Fig. 5 Total interaction potential between DNA molecule inside (18, 18), (19, 19), (20, 20) and (21, 21)
CNTs as function of DNA radius r for the special case φ = π

Fig. 6 Total interaction potential between DNA molecule and CNT as function of tube radius a for the
special case φ = π
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for (18, 18), (19, 19), (20, 20) and (21, 21) carbon nanotubes are the radii of these
tubes, respectively. In addition, these results give numerical values for the distances
between the centre of the DNA and the wall of the nanotube. In addition, the larger the
nanotube radius, the larger the optimal radius of DNA as a larger radius nanotube tends
to accommodate larger DNAs. The DNA becomes unstable as the radius is increased
beyond 9.47 Å, 10.17 Å, 10.84 Å and 11.52 Å for (18, 18), (19, 19), (20, 20) and
(21, 21) carbon nanotubes, respectively due to the mutually repulsive force between
the DNA and the nanotube. Also, as shown in Fig. 6 the preferred radius of carbon
nanotube to enclose the double helix DNA in the special case φ = π is about 12.73
Å, so we infer that the (19, 19) tube is the preferred tube.

4 Summary

This paper presents a new applied mathematical model to investigate the interaction
energy between a double-stranded DNA molecule (dsDNA) that is assumed to be
inside a single-walled carbon nanotube. We employ the 6–12 Lennard–Jones poten-
tial together with the continuous approximation to calculate the van der Waals inter-
action energy which may be expressed in terms of the hypergeometric function. We
examine the interaction energy for a dsDNA inside single-walled carbon nanotube for
different armchair tubes, assuming that the DNA is already accepted into the tube.
We refer to the location where the potential energy adopts the minimum value as the
preferred optimal location. The numerical evaluations are performed using the alge-
braic computer package MAPLE. For the helical phase angle of the DNA, we study
two cases for the interaction of the dsDNA inside a single-walled carbon nanotube,
which are the general case with φ = 12π/17, and a special case with φ = π . In
both cases we observe that at the point where the minimum energy occurs, that the
difference between the radii of the CNT and the DNA is approximately 3.25 Å(a−r ≈
3.25 Å). In addition, the results indicate that the encapsulation of the dsDNA mole-
cule into a single-walled carbon nanotubes may occur for carbon nanotubes with radii
greater than 12.30 Å. Moreover, the optimal radius of carbon nanotube to enclose the
double helix DNA in both cases is approximately 12.8 Å, and we conclude that the
preferred tube is (19, 19). These results are close to those determined by Xue and Chen
[26], who propose that the dsDNA molecule can be encapsulated inside a (20, 20) CNT.
We comment that the mathematical modelling employed in deriving these results is
computationally instantaneous, moreover, it compares favourably with other methods
such as molecular dynamics simulations and experiments for example [17,26] which
together may serve as a solid background for understanding DNA mechanics in carbon
nanotubes.

Acknowledgments The first author would like to thank King Saud University (Saudi Arabia) for through
the awarding of a PhD Scholarship.

Appendix A: Analytical evaluation of (1)

In this Appendix, we present the analytical details for the evaluation of (1). By defining
the integral Rn as
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Rn =
1∫

0

(
1 + 4r2π2 sin2(φ/2)

c2 t2
)1/2

F

(
2n − 1

2
,

2n − 1

2
; 1;

(
ξ

a

)2
)

dt,

since

ξ2 = r2
[
cos2(φ/2) + t2 sin2(φ/2)

]

= [r cos(φ/2))2
[
1 + t2 tan2(φ/2)

]
,

thus

Rn =
1∫

0

(
1 + 4r2π2 sin2(φ/2)

c2 t2
)1/2

×F
(
(2n − 1)/2, (2n − 1)/2; 1; [r cos(φ/2)/a]2

[
1 + t2 tan2(φ/2)

])
dt,

on making the substitution x = t2 ⇒ dt = (1/2)x−1/2dx , when t = 0 ⇒ x = 0, and
when t = 1 ⇒ x = 1, and by letting α = [2rπ sin(φ/2)/c]2. Thus, the integral Rn

becomes

Rn = 1

2

1∫

0

x−1/2 (1 + αx)1/2

×F
(
(2n − 1)/2, (2n − 1)/2; 1; [r cos(φ/2)/a]2

[
1 + x tan2(φ/2)

])
dx,

and on using the generalized hypergeometric series [7], we may deduce

Rn = 1

2

∞∑

m=0

(
((2n − 1) /2)m rm cosm(φ/2)

m!am

)2

×
1∫

0

x−1/2 (1 + αx)1/2
[
1 + x tan2(φ/2)

]m
dx,

and by taking

Hm =
1∫

0

x−1/2 (1 + αx)1/2 (1 + βx)m dx,
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where α = [2rπ sin(φ/2)/c]2 and β = tan2(φ/2), then

(1 + βx)m =
m∑

p=0

(
m

p

)
β px p,

where
(i

j

)
is the binomial coefficient. Thus the integral Hm becomes

Hm =
m∑

p=0

(
m

p

)
β p

1∫

0

x p−1/2 (1 + αx)1/2 dx,

by using form in [7] (p. 59, Eq. (10)), thus

Hm = 2
m∑

p=0

(
m

p

)[
β2p/(2p + 1)

]
F(−1/2, p + 1/2; p + 3/2;−α).

and we may deduce that Rn is given by

Rn = 1

2

∞∑

m=0

m∑

p=0

(
m

p

) [
β2p/(2p + 1)

] (
((2n − 1) /2)m rm cosm(φ/2)

m!am

)2

×F(−1/2, p + 1/2; p + 3/2;−α), (4a)

and this expression completes (2).

Appendix B: Analytical evaluation of (3)

In this appendix we evaluate (3), By defining the integral In as

In =
1∫

0

(
1 + 4r2π2

c2 t2
)1/2

F

(
2n − 1

2
,

2n − 1

2
; 1;

(
ξ

a

)2
)

dt,

since ξ = r t , thus

In =
1∫

0

(
1 + 4r2π2

c2 t2
)1/2

F
(
(2n − 1)/2, (2n − 1)/2; 1; (r t/a)2

)
dt,
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on making the substitution y = t2 ⇒ dt = (1/2)y−1/2dy, when t = 0 ⇒ y = 0, and
when t = 1 ⇒ y = 1, and by letting α∗ = (2rπ/c)2. Thus, the integral In becomes

In = 1

2

1∫

0

y−1/2 (
1 + α∗y

)1/2
F

(
(2n − 1)/2, (2n − 1)/2; 1; (r/a)2 y

)
dy,

using the generalized hypergeometric series [7], we may deduce

In = 1

2

∞∑

k=0

(
((2n − 1) /2)k rk

k!ak

)2 1∫

0

yk−1/2 (
1 + α∗y

)1/2
dy,

by using form in [7] (p. 59, Eq. (10)), thus

In =
∞∑

k=0

(
((2n − 1) /2)k rk

(2k + 1)1/2k!ak

)2

F
(−1/2, k + 1/2; k + 3/2;−α∗), (4b)

and this expression completes (3).
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